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SUMMARY 
A new general approach for numerically computing flow fields on parallel computing environments is 
presented, discussed and analysed. The hierarchy presented here is based on a parallel split of operators. A 
portion of the theory is presented together with its application to two- and three-dimensional flows. This 
strategy is applied to a two-dimensional problem for which a specific parallel split, called a parabolized split, 
is given. The parallel algorithm that results from this split is analysed, leading to reasonably good parallel 
efficiency, which is close to 50%. Actual experiments lead to similar conclusions. This parallel strategy can 
also be used together with other parallel computing algorithms, such as domain decomposition, to give an 
optimal-type parallel algorithm for the Navier-Stokes equations. 
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1.  INTRODUCTION 

It is well accepted today that the Navier-Stokes (NS) equations exhibit a good approximation for 
the behaviour of the motion of flows and for aerodynamics in general. Since the area of 
computational aerodynamics is very important, a variety of numerical schemes for solving these 
equations for many different cases, for different instances of the flow fields and for different 
geometries have been devised during the last decade. Thus naturally, computational fluid 
dynamics (CFD) has emerged, especially in the last few years, as an essential element for progress 
in two related fields: 

(a) a deeper understanding of the physics of the flow 
(b) the design process of most types of aerospace vehicles. 

This very important revolution has been driven by advances in computer power that have led to 
advances in numerical techniques. The result is that better computational simulations are 
achieved more cost-effectively. This remarkable progress (mostly made during the last 10 years or 
so), which was sparked by the availability of supercomputers, was focused primarily on the 
development of inviscid flow field simulation techniques. 

Obviously, there are some advantages and disadvantages to most of the known schemes, the 
available algorithms for computing the flow quantities using the chosen scheme, and the 
computing techniques used to implement these schemes and algorithms. One of the main 
bottlenecks of many of these schemes is the huge amount of CPU time consumption needed to get 
satisfactory solutions for the system of approximate equations. It is obvious that there exists a 
coupling between the computing time consumption and the nature of the scheme, but usually any 
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algorithm to solve these equations will require large resources of computing time and memory. 
This is not the only problem these schemes face in using the present computing facilities, but this 
paper will concentrate mainly on this issue. 

Supercomputing is a resource that many computational researchers are using today to 
overcome this problem. Since ‘supercomputing’ is not a well defined mathematical notion, it is 
viewed here as computational hardware which consists of vector-like computers and parallel-like 
computers. Although it has been shown for a few cases that vectorizing the numerical scheme 
while using vector machines to execute the numerical algorithm gives a reasonable speed-up when 
compared to the standard scalar machines, it has also been shown’ that in some cases the 
application of vector-like schemes to the fluid flow numerical equations when using more 
reasonable computing algorithms produces only a limited speed-up over scalar machines. It will 
be shown here that a better way of achieving a good speed-up using current schemes, which are 
theoretically unbounded in some sense, is by using a parallel machines as the main carrier for the 
computations. This is especially important since now it is quite evident that forthcoming (super) 
computers will have substantial capabilities of parallelism. 

The present paper focuses on extending the simulation capabilities to more complex flow fields 
as well as obtaining a more complete treatment of aerodynamic phenomena. A major goal that 
combines both of these directions is the simulation of three-dimensional fluid flow around a 
complex body or three-dimensional internal flow. When trying to achieve such a goal, it is 
necessary to be cognizant of the available types of computing tools. One of the problems that 
appears in mathematical computing, especially in the CFD area, when a new concept of computer 
hardware arrives, is how to redesign efficiently the existing numerical schemes or how to invent 
new numerical schemes to take advantage of the special capabilities of the new machine. 

This paper presents a new parallel/distributed strategy to solve numerically steady state two- 
and three-dimensional incompressible viscous fluid flow problems. One of the main goals of this 
paper is to develop a good combination of a numerical scheme and a parallel computational 
technique that, together with the appropriate parallel engines which are available (or will soon be 
available) on the market, will produce high-performance codes for computational fluid dynamics 
and will make it possible to examine more closely finer and finer structures that a fluid may 
produce during its flow. It is known that it is very difficult to solve computationally the governing 
(Navier-Stokes) equations for these steady state problems, while for other cases (such as unsteady 
fields or compressible flows) the numerical problem is a bit easier and thus simplified versions of 
the present schemes may be used. Although it is treated extensively in Reference 2, special 
attention is given in this paper to high-order numerical schemes for flow fields, which can be used 
for high-Reynolds-number flows. The formulation of the schemes is affected by the nature of the 
computer to be used. Basically, it may be extrapolated from this work that any MIMD machine 
with a fast interconnection network between the processors or a fast access to the shared memory 
can serve as a reasonable parallel computer to implement the suggested strategy, while there is no 
real limitation on the number of processors in this machine. 

After some definitions and the problem lay-out, a new parallel/distributed scheme to compute 
three-dimensional viscous fluid flow is described and discussed. This scheme is quite general and 
does not require specific machines. 

2. THE PARALLEL COMPUTATIONAL MODEL 

In this section the general computational model of a parallel machine will be described. The basic 
features are needed in order to implement efficiently the parallel CFD algorithms. For the present 
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family of algorithms it is enough to describe the parallel machine as a single computer that 
includes? 

(a) multiple processors 
(b) processors which may communicate and cooperate at different levels to solve a given 

(c) multiprocessors controlled by the same operating system-this operating system also 
computational problem 

controls the other computer resources. 

Two architecturally different parallel machines are available on the market: 

(a) loosely coupled multiprocessors where each processor has a large local memory in which an 
appropriate part of the algorithm and the appropriate data reside-the processors 
communicate by exchanging messages through an interconnection network 

(b) tightly coupled multiprocessors where all of the processors share a common memory-here 
the communication between the processors is done via the shared money. 

The main bottleneck of the loosely coupled systems is in the low bandwidth of the interconnection 
network: and although the rate at which data can communicate from one processor to another in 
a tightly coupled system is of the order of the bandwidth of the memory, the main reason for the 
performance deterioration in these systems is memory ~ontent ion .~  Since the primary breakdown 
in efficiency for parallel systems is in the extensive need for communication between the various 
resources, one of the main goals in formulating the parallel numerical scheme is to minimize the 
communication between the different tasks. 

3. THE DISCRETE NUMERICAL MODEL 

In order to solve the NS equations on a digital computer, they have to be discretized. There are 
several methods which transform the continuous problem to a discrete one (via finite differences, 
finite elements, spectral approximations, etc.). However, before discussing this area it is important 
to decide which mathematical description of the NS equations is the most appropriate for a 
parallel environment. 

3.1. The governing equations 

momentum equations, which form the following elliptic system. We call this system I: 
The steady state incompressible flow is governed by the continuity equation and the three 

au av aw 
ax ay  aZ -+- +-= S, 

au au au ap 
ax ay aZ ax u-+ v-+ w- = --+ &V2U +fi, 
av av av ap 
ax ay az ay u-+v-+w-= - -+&VZV+f , ,  

aw aw aw ap 
ax ay aZ aZ u-+v-+w-= - - -+&V2w+f , ,  

(3) 

(4) 

where u, v and w are the Cartesian components of the velocity vector V =(u, v , w ) ~  in the x-, y-  and 
z-directions respectively, p is the pressure function and E is the inverse of the flow Reynolds 
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number. The operator V2 is defined as usual 

This system has two driven terms: s is the mass source term and f is the external force 
vector which acts on the flow. Usually these source terms are zero. System I is of the elliptic type 
and has to be solved in some (given) domain R e g 3  with a well defined boundary an. The 
boundary conditions over an are usually given in terms of the velocity vector and/or its gradients: 

a v  
an 

aV + b- = c, 

where a and b are (local) 3 x 3 matrices and c is a three-element column vector. Each of the entries 
of the coefficients in (5) is a given function of iX2 and V, while the value of the pressure is given at 
some point in R: 

In fact, (5) can be replaced by any kind of three relations between V and p on an which constitute a 
non-singular system at each point of dn. 

P ( X 0 )  = P o .  (6) 

3.2. The computational system 

From the computational point of view, system I is usually referred to as the primitive variables 
system. In the past some difficulties have been reported when trying to solve numerically the 
primitive system. Roache6 discusses some major difficulties in solving the primitive variables 
system. The main conclusion from this discussion is that the drawbacks of the other possibilities 
are much more severe than those of the primitive system. (Indeed, recent numerical procedures for 
the NS equations use the reduced variables formulation.) The primitive equations (system I) are an 
elliptic system by definition, since it can be shown that the determinant of the principal symbol of 
this system does not vanish for non-zero values of the dual variables' (this condition results from 
the regularity requirement of the elliptic systems). This definition of ellipticity can be extended to 
define an elliptic computational system (for the finite difference case see References 9-1 I) ,  which 
leads to the conclusion that if 2k is the order of the principal values' determinant, then the elliptic 
system needs k boundary conditions at each point of an. Thus the NS equations need only d 
boundary conditions" at every point of 22, where d is the number of dimensions of the flow 
domain. 

In the present paper we will solve the discrete version of the primitive system I of the NS 
equations. This two- or three-dimensional system is non-linear and thus to obtain accurate 
solutions it is necessary to employ an iterative technique." Next we briefly describe the possible 
iterative modes that will be considered later. 

4. THE ITERATIVE APPROACH 

The concept that will be used here for solving system I numerically is a version of the iterative 
factorization p r ~ c e d u r e ' ~  which is suited for a parallel environment. It is not the only possible 
approach, but this one enjoys several nice features which may make it more useful. We discuss this 
in more detail later. 
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4.1. The general technique 

We start with some standard  definition^.'^ 

Dejnition 1. The time complexity of a scheme or of an algorithm is the time needed by the 

(a) the size of the problem, 
(b) the machine’s units time. 

scheme to solve a problem, expressed in terms of: 

Assume now that L is a partial differential operator of the elliptic type, which operates on 
functions 4, 46Rd. 

Definition 2. A discrete size of L is the number of discrete elements in Rd that are considered in 
order to approximate L. 

For example, it is said that the discrete size of L is N if N is the number of grid points in iz, when L 
is approximated by some finite difference procedure, or if N is the number of modes taken into 
consideration, when L is approximated by some kind of a spectral procedure.15 Suppose that the 
following elliptic PDE has to be solved: 

L@ = R, (7) 
where R is a known right-hand side (RHS). Most of the time it is very difficult or even impossible to 
get an analytical solution or a direct numerical solution for this problem (especially when L is a 
non-linear operator). The usual way of solving (7) is by using some iterative procedure. Generally 
speaking, when using an iterative procedure, one has to start with some initial guess for the 
solution, say . . . } that will converge to the 
solution CD of (7). Most of the methods usually suggest that the nth element in this sequence (the 
one that is calculated in the nth iteration level) is a linear combination of some k previous elements: 

and then generate a sequence S = {@“), a(’), 

where k is the depth of the recursive scheme. These procedures differ from one another: 

(a) in the value of k 
(b) in the way the operators Li, are constructed. 

In the present approach a depth 1 (k = 1) recurrence iterative procedure will be considered, while 
each iteration level consists of a fixed number of substeps as will be explained later. Thus instead of 
(8) the following iteration procedure will be considered, 

@(n + 1) = M(n)@(n) + Nb), 

and in order to satisfy the original equation (7), the operator M and the function N have to satisfy 
the following relation at each level n: 

(9) 

L(I-M(~))-”(~)=R. (10) 

We will restrict the present iterative procedure to be of the stationary type, i.e. M and N are not 
functions of the iteration level n. Although this assumption may contradict the non-linear fashion 
of the operator L as defined by the NS equations, it holds at least locally in the iterative directions 
and therefore the conclusions may be applied only for a certain number of iterations (this 
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approach is sometimes called the quasi-linear iterative approach). The main difference between 
the intermediate results of a substep and the one-step results of the iterative procedure in a given 
iteration level is that the substep's results do not have to be a solution to (7), not even in the 
convergent state, while the iteration procedure is designed to satisfy (7) in the convergent state. If 
N is a known stationary function (a  .id thus should not depend on n), then in general it can be 
assumed that it depends only on R. For example, 

N=GR, (1 1) 

M = MI-HL. (12) 

where G is a given operator. If M is not a function of n, then it can only be a function of L. Assume 

Thus from (10) it follows that 

(G -H)L=I-Ml.  

This equation defines a family of iterative methods which differ from one another in their choices 
for the three operators G, H and M,. We will concentrate on two different approaches for 
generating these operators. 

4.2. Splitting and factoring 

The techniques for finding M and N are divided into two major classes: the factoring class and 
the splitting class. In the first technique the operator L is approximated by a product of several 
operators whose inverse is well defined and can be computed directly and easily, and the iteration 
loop is performed in order to 'bridge' over the difference between the approximation to the 
operator L and the operator L itself. In the second technique several different operators which are 
'close' to the operator L are identified so that their inverses can be computed easily on the given 
computer system. Then the approximate solution to (7) will consist of some (linear) combination of 
these approximate solutions. Again the iterations are performed to narrow the gap between the 
approximate solution to (7) and the exact one. 

4.2.1. The factoring techniques. This procedure is designed based on the assumption that L can 
be decomposed into d operators as 

d 

L= c Ai. 
i =  1 

(14) 

Given a sequence of scalars ,4 = { A i } ! =  1, let us define the (A) operators as 

.& = Ai + l iI .  (15) 
It can be shown that if it is known how to reasonably and quickly (numerically) invert the operator 
Ai, then the same procedure can be used to find the inverse of &. Based on this observation the 
present iterative technique is constructed as follows. Denoting by a(') the approximation for Q, at 
the nth iteration level, and by 'Yj the results of thejth substep at this level, the computations at the 
nth level of the algorithm start by setting 

9 (16) \yo = - 1). 

then d substeps are executed, where the ith substep is given by 
i -  1 

AiYi=-C Ei,j'I'j+Fi, i = 1 , 2 , .  . . , d ,  
j = O  
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and the result of the last substep is stored in a("): 
= Yd.  (18) 

Here {Ei, j }  is a given sequence of operators and (Fi} is a given sequence of functions. At each 
substep of the algorithm the appropriate E operators and F function have to be determined based 
on the given factoring of the set of operators A and the values of CD and Y that are known up to the 
current iteration level. It is reasonable to assume that the F function is related to R as follows: 

Fi=QiR. (19) 

D~ = A,: E,; (20) 

The more common case is when Ei, = 0 for j < i - 1. Let us denote Ei, - = Ei and 

then it follows that 
d 

i =  1 
M = n D i  

and 

This factorization scheme is quite general and has 2d free operators. Application of the condition 
given in (13) for this case is 

Later this condition will be stated clearly. Figure 1 depicts schematically the iteration loop when 
asing this technique. 

Most of the implicit iterative methods discussed in the literature are of the factorization type. 
The classical implicit methods have been discussed by DouglasI6 and Douglis and Nirenberg. 
The classical factoring method is that of Peaceman and Rachford" and was developed for the case 
where 

I =function (A), 
a 2  a 2  

A - 7 9  A,=@, 2-C7y 

with A the time step. For this case the following was chosen: 

Figure 1. Pipeline scheme for the factorizing technique 
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They gave to the I1 the meaning of marching in the time-like direction (see Section4.1.3) as 
follows. Assume that instead of (7) the following equation is considered: 

where t is a time-like ('parabolic') co-ordinate. Then if central differences are considered for the 
time term, the I s  are proportional to the inverse of the marching time step. For this case the above 
set of equations presents an approximation of the order of two in the time-like direction. The main 
disadvantage of this technique, as pointed out by D'Yakonov'' and Mitchell and Griffiths,20 is 
that it will lose its accuracy if the boundary conditions become time-dependent (which is irrelevant 
in the present case). 

4.2.2. The splitting technique. The splitting techniques are similar to the factoring techniques. 
Assume as before that L can be split into d operators. Similar to the development done before for 
the factoring technique, each iterative level of the splitting technique has also d substeps. The main 
difference between these two approaches is that the results of each substep of the splitting method 
should not rely on any of the results from the previous substeps. Thus the d independent substeps 
are given by 

Ai'I'i=R-BiW"l', i = l , 2 , .  . . , d ,  (24) 
and 

where a = {a}:= are d operators with the condition 
d 2 ai=I 

i =  1 

and the d operators Bi satisfy the condition given in the original equations, or after some algebraic 
manipulation: 

d 

C aiA;'(L-Bi)=I. 
i =  1 

A simple schematic parallel implementation of this approach is shown in Figure 2. Another 
condition that the free operators ai have to satisfy is that the iterative processes will converge in the 
maximum speed-up. It can be shown that this condition means 

where A is now the spectral radius of an operator (or a matrix). Several splitting-type techniques 
are used in the literature (examples appear in References 21 and 22). It is evident that not much 
work has been done in this direction, probably owing to the fact that splitting methods are much 
slower on serial computers than factoring methods. However, versions of the approximate 
correction proceduresz3 and of the Hopscotch procedurez4 can be presented as splitting methods 
and not only in the factoring version. The latest observation as it appears in the literature is that 
often more than one factoring or Splitting formula can be chosen to obtain a computationally 
attractive process. 
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- 
Figure 2. Parallel scheme for the splitting technique 

4.3. Parallel iterative procedure 

From the above discussion it seems that the splitting procedure is appropriate to be 
implemented on parallel machines. Let us demonstrate this technique as is described in 
Section 5.2.2 for d = 2. 

Assume that the operator L in (14) is split into 

L = A l  +A2.  (29) 
Then each parallel nth iteration can be written as follows: 

and the next approximation is given as 

(32) " + I ) -  4' -a1 Vl +%V2Y 

where a, and a2 are two known coefficient matrices. This scheme can be written as 

#"+ l )  = [al  (A - Jl I)- + a2 (A, - 1, I)- b - [a1 (A , - 1, I)- (A2 - O, I) 
+a2(A2-L21)-'(Al -0~1)]4("). 

If the exact solution to this problem is 4 and we denote the error function by 
&(") 4 - 9(") 

then it can be shown that 
E(" + 1) = ME(") Y 

where 

M = 011 (A1 - 1, 1)- (A2 - 01 I) + aZ(A2 - 121)- (A1 - 021) 

and is subject to the condition 

(a, +~~)+(o~+1~)a,(A~-1~I)-'+(o~+~~)a,(A~ -A21)-'=1. 
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Let us consider as a simple example the standard serial AD1 schemes." Here the scalar I s  are the 
inverse of the half time step size, and the u s  are just the negative of the respective As, i.e. 

1' = - 0 1 ,  L 2 =  -02.  (38) 

(39) 

Then a relationship similar to (28) holds: 

M = [ u ~  (A, - AII)-' + U , ( A ~  - LJ-']L-I. 

The main problem is to find a set of six parameters Al , z ,  w1,2 and such that the rate of 
convergence will be maximum or IL(M)I will be as small as possible. This by itself is a very difficult 
mathematical problem. In addition, it can be seen intuitively that there exists a specific split of L 
that will also maximize the convergence rate of the iterative process. Given that, the optimization 
problem is almost not solvable and some assumptions or approximations for the values of some of 
the parameters are needed. 

In the rest of this paper we will analyse a parallel numerical scheme for the two-dimensional NS 
equations which is optimal over a subset of these parameters. 

5. A PARALLEL SCHEME FOR TWO-DIMENSIONAL FLOWS 

In this section we will develop a very specific and simple parallel algorithm for two-dimensional 
viscous flows based on the theory outlined in the preceding section, along with some assumptions 
which make the analysis easier. This algorithm was actually implemented on parallel computing 
environments. 

5.1. The computational scheme 

The governing equations are extracted from equations (lH3): 

au av 
-+-=0, ax ay 

au au ap (a2, a i U )  
ax ay ax a x 2  ay2 

u-+v-= a v  av ----+& ap ( a 2 v  -+-- a;) 
ax ay ay a x 2  a 2 . 

u-+v-= ---+& -+- 

A parallel solution of these equations is obtained by splitting the differential operator defined by 
this system into two differential suboperators which are solved concurrently. From the previous 
discussion it follows that the more the equations describing each of the suboperators resemble the 
original operator the better is the scheme (in terms of its stability and rate of convergence). On the 
other hand, these suboperators should be invertible in reasonable CPU time and direct access 
memory consumption. The following split was chosen. 

1. A,  is an operator of the parabolized type in the x-direction. 
2. A,  is a parabolized operator in the y-direction. 

The notion of 'parabolized' operator is well defined24 and is well ~ n d e r s t o o d . ~ ~  The main 
reason for this choice is that there are many cases for which the parabolized NS approximation 
can capture most of the flow's important features in most of the flow domain.'2'26 Let us denote 
by the subscript 1 the results of the suboperator A,  and by the subscript 2 the results of the 
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suboperator A,. Thus the equations which result from A, are 

au, av, 
ax a y  
---+--0, 

The equations which result from the suboperator A,  are 

au, av, -+--0, ax ay 

The source terms R and S are designed to bridge over the difference between each of the 
operators A,  and A,  and the original operator (given by (43H48)). Numerically, these equations 
are solved iteratively, where the calculated source terms are lagged one step behind the fields of 
ul,,, u, , ,  and p , , , .  Thus the iterative systems can be described in general as follows. 

Given R , , ,  and S , , ,  with u and v until convergence. 

1. Iterate until the source terms converge. 
(a) Calculate the new fields u,,, ,  v , , ,  and p i , , .  
(b) Calculate the new source terms R , , ,  and S1,,. 

2. Calculate the new convection coefficients u and v. 

One of the main advantages of this choice for A, and A,  is that the solution of each operator 
fulfils the continuity condition, which is a very important conservation law to be kept during the 
solution process of flow fields in genera1.12*24 

It is not clear as of now what values should be substituted for the convection coefficients u and v 
in the above equations. Several of the possibilities are: 

(a) the current values of u and v 
(b) the current values of (u, ,  u l ) ,  vl) and (u,, v , )  respectively. 
(c) the values of u and v from the last global iteration. 

Of course there are more possibilities. The discussion of this issue is delayed until the next 
section where numerical solutions for the system are discussed. Now the two solutions, that of A,  
and that of A,, have to be combined so that the result may serve as a good approximation for the 
solution of the original system of equations. In the present paper a linear combination is assumed: 

[; =cl[ +c, [ ;;I. 
In order for this procedure to converge we have to have 

c,  + c, = I. 
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In the present paper we further assume 

Obviously this is quite a limited approach and one can assume a more general combination. 
However, it turns out that it gives very encouraging results. If continuity has to be preserved 
automatically, then 

a1 =a2 = a, B 1 = P z = b  

a3 = a, 83=b 

If the coefficients of u and u in both operators are the same, then 

and the conditions on the source terms are 

For the present set-up we look for the appropriate values of the convection terms and the source 
terms so that the rate of convergence will be as large as possible. 

5.2. The parallel computing method 

The model of computation that will be assumed and used here was described in Section 2. It is 
assumed that the parallel environment consists of several loosely coupled processors which are 
clustered into two groups: one that is used by the operator A,  and the other that is used by the 
operator A,. 

The flow of the computation is such that there are two levels of parallelism. In the coarse-grain 
level the two subsystems (43H45) and (46H48) are solved concurrently. Each of these subsystems 
is solved by marching along the splitting direction (which is, for example, x for the A,  operator) 
and solving implicitly along the other direction. The marching procedure is performed in the 
parabolized-like fashion which is well documented in Reference 25. The governing equations 
along the normal direction are of the boundary value problem (BVP) type.” Here the fine-grain 
parallelism enters as the BVP equations are solved locally in a fine parallel manner. This parallel 
procedure is based on the co-ordinate-split strategy which is well documented in References 1 
and 27. After the two subsystems are solved, the expressions which construct the source 
terms are calculated. Since this is an explicit or a passive step, these elements can be calculated 
in parallel using the appropriate processor, almost without shuffling data around. 

Here the processors under the control of A,  compute (in parallel) the values of a2ul/ax2 and 
a2vl/dx2 and, concurrently, those under the control of A,  compute in parallel the values of 
a2u2laY2 and a2v2/ay2. 

Finally there is one step which is a scalar-like operation: the calculation of the flow velocities 
and the source terms themselves. But since this is a passive operation (i.e. all the elements involved 
carry old values), these calculations can also be executed in parallel. However, if this step is 
executed concurrently by all the available processors, it may need a lot of data transfer which may 
affect the time complexity dramatically. 

The numerical scheme used to solve the parabolized equations for given convection coefficients 
and source terms is similar to the one used in References 24 and 25. However, an appropriate 
correction was added to the computational system in order to maintain second-order accuracy for 
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all the finite-differenced terms. This procedure is unconditionally stable in the linear case and 
converges relatively fast in the general case. 

5.3. Stability of the global iteration 

Here we wish to check the stability situation due to the lagged calculations of the source terms. 
Most of the analysis will be done for the linear case. For the non-linear case, since its solution is 
obtained by using a second-order rate of convergence algorithm (such as the quasi-linear 
algorithm), this analysis can be applied to each of its linear steps. 

In order to get some general results on the stability condition, let us start with the Poisson 
equation 

L x  +fyy = 0. 

The parabolized iterative version for this equation is 

&!! I ) -  G( @"+ I ) )  = - [a$G) + (1 - c1)4c] - G( #")), 

$r I ) -  H($'"fl') = - [B&'+(1 -/?)$fi-H($(")), 

where c1 and /? are two scalar coefficients. Although we will assume hereafter that G and H are two 
scalar coefficients, in general they can be operators which operate on the scalar values of the two 
functions 4 and $. 

In order to analyse this simple iterative system, we have to be more specific about the numerical 
procedure. We choose here to solve this system by using a finite difference scheme. Let h and k be 
the (constant) grid spacings and N, and Ny be the number of grid points in the x- and y-direction 
respectively. In the case of convergence the error functions are defined as 

&(") = p). $0 = ,j (a) - ,j(n). 

The analysis of the stability and convergence is done here using the von Neumann approach.'* Let 

Xi 6.=--, X j  1 <j<Ny.  1 < i < N,, ' NY Y.=- ' N,' 

Then the error functions are expressed as 

= 1 A,, exp(i y k i )  exp(i8, j), Sj:i= 1 B,, exp(iy,i) exp(iB,j), 
k ,  I k, I 

where i2 = - 1 and A, and B,, are the amplification coefficients. The main assumption that we will 
use later in connection with the amplification coefficients is 

A,, =&a", B,,=@". 

Although it is not shown explicitly, 2 obviously depends on the (i, j ) th  mode of the error function. 
Now we need to estimate the values of H ,  G,  c( and /? that will minimize the amplification factor 2 
over all the possible modes. It can be shown that for each of the modes, 1 fulfils the following 
quadratic equation: 

AA2 + BA + C=O, 

where 
A = (H + @(G + y), 
B=(H + Q)[(1 -a)@- 13 +(G + y)[(1 -P)?- 11, 
C=[H-(l -P)Y][G-(l -a>@]-c1Bjj6 
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with 

It can be shown that the maximum values of i occur when the angles y and 0 are minimum. 
Unfortunately it can be proven that I cannot have any local minimum with respect to (real values 
of) G and H and thus the optimum situation has to be sought in some other way. However, it can 
be proven that in order for this scheme to be stable and convergent the following inequalities have 
to be satisfied: 

?(G - @)B + @(H - ?)a < ~y + H R  
sin ?/(G+y))B+&H + @ ) a < ( G + Y ) ( H  + e+?- 1)+(H + @(G+ @+ 7- 1). 

From examining the results of several test cases we observed that as far as the dependence of the 
rate of convergence on CI and )B is concerned, the minimum value of 111 happens to occur for very 
small positive values of these parameters. For this case it can be shown that 

( H - T ) ( G - ~ )  ) B ~ ( G - ~ ) + c I ~ T ( H - ~ )  
I A 2 ' = ( H + ~ ) ( ~ + j q  + ( G + ~ w I + @ )  

If indeed the values of 7 and 8 are very small compared with those of H and G, then 

G + H +  
2GH ' ' ' ' 

I =  1 -(@+?)- 

Table I depicts some examples of this dependence of the best I on the values of G and H as reflected 
by equation (50). 

It should be noted that since the equations for A are non-linear, we may expect to have more 
than one optimal couple (G,  H )  that will give the same value for I .  In practice we choose 

- G  H 4e=- 47=- 
G + H '  G + H '  

It was found that these values give a near-optimal rate of convergence in actual calculations. 

5.4. The two-dimensional calculations 

Two cases for which this strategy was applied are discussed: the well known square driven cavity 
problem 2 and the flow over a backstep." Refering to the governing equations (40H42), in order 

Table I 

10 x 10 1.32 
1.404 

2.0 
1.41 1 

20 x 20 1.48 

40 x 40 1.46 
1.86 
1.4137 

1.5 0.8269 
1.404 

1.35 0.8560 
1.09 
1.41 1 

1.37 0.8635 
1.14 
1.4135 
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to reduce the amount of calculation while not damaging the numerical scheme, we have chosen 
S ,  = S ,  = 0. Also a term of the type G /  was subtracted from both sides of (44), (47) and a similar 
term H/ was subtracted from both sides of (49, (48). Here / = ( u ,  u, and H and G are two 
3 x 3 constant matrices. We have chosen these matrices as diagonal with a zero value for their 
first entry: 

G =  0 G ,  :], H=[: :, : ] .  
0 0 G, 0 0 H ,  

The iterative procedure consists of several loops. The outside loop is due to the quasi- 
linearization.' At this level of iteration no parallel procedure can be enforced since it is an inherent 
serial recursive system of depth 1 (i.e. gi = f ( g i -  ,)). We start applying the parallel strategy at the 
linear level. The stability analysis of these equations is far more complicated than that in the 
previous section. In any event it is possible to get some bounds on the parameters G and H. For 
example it can be proven that 

where N = N ,  = N ,  and Gz, , means MAX( I Gz 1, I G, I). Of course, better and more accurate values 
of G and H can be obtained but the procedure is very involved. In Table I1 values of G and H for 
various Reynolds numbers are depicted for both flows (the square cavity and the backstep flow) 
along with some other details. The calculations were performed on the Allaint parallel computer. 
In order to exemplify the flexibility of this approach, three processors were devoted to the A,  
operator and four processors were devoted to the A,  operator. The results are presented for 401 
x 763 grid points. We denote the values of G and H for the x-momentum equation by ( G ,  , HI). 
Similarly, (G, ,  H , )  are the values of G and H for the y-momentum equation. The convection terms 
were treated by second-order upwind differencing.' We measure here the quality of the parallel 
algorithm by the ratio between the pure parallel CPU time and the CPU time needed to solve this 
problem on one of the processors in the parallel environment, using a similar serial algorithm. 
Defining this quantity as an efficiency, the numerical experiments presented in Table I1 suggest 
that the parallel efficiency approaches 50%. This result coincides with a similar result for parallel 
computing of elliptic operators and boundary value problems15 for which we have gotten a similar 
result. 

6. CONCLUSIONS 

A new approach for the parallel numerical computation of the two- and three-dimensional 
Navier-Stokes equations is developed and discussed. The method is based on the idea of a m l e l  
operator split. This new direction for parallel computing is not fully developed yet, and the good 
results presented in the present paper suggest that more careful attention and effort should be 
devoted to this idea. Although the theory of such a split is not complete yet, we have shown how 
this approach can be implemented in two-dimensional simple flows, for which we have been able 
to get theoretical results for the approximated rate of covergence of the parallel iterative methods. 

It is expected that the parallel split theory will spin off in the near future and will resolve some of 
the questions that were encountered during the course of this work, such as: Since there are several 
possibilities for the parallel split for a given set of PDEs (which are stable and consistent), what is 
the best split (in terms of parallel rate of convergence)? How does the parallel hardware influence 
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Table I1 

Re 20 50 100 200 500 lo00 

Square cavity G, rnin 
max 
opt 

G, rnin 
max 
opt 

H ,  min 
max 
opt 

H ,  rnin 
max 
opt 

Efficiency 

1.53 1.42 
3.41 3.35 
2.54 2-51 
1.44 1.42 
1.78 1.75 
1.63 1-61 

1.51 1.50 
1.93 1.90 
1.74 1.74 

2.05 2.02 
2.61 1.57 
2.35 2.33 
0.48 0-47 

1.39 1.38 1.38 1.37 
3.29 3.24 3-19 3.16 
2.48 2.46 2.45 2.44 
1.41 1.40 1.40 1.40 
1.73 1.71 1.70 1.69 
1.60 1.60 1.59 1.59 

1.49 1-49 1-49 1.49 
1.88 1.87 1-87 1.86 
1.73 1.73 1.73 1.72 
2.01 1.99 1.98 1.98 
2.54 1.51 1.49 2.48 
2.32 2.31 2-31 2.30 
0.44 0.41 0.40 0.40 

Back step G ,  rnin 1.74 1.67 1.61 1.55 1.49 1.46 
max 4.23 4.15 4.09 4.04 4.01 3.98 
opt 2-94 2-89 2.86 2.84 2.83 2.83 

G, rnin 1.40 1.37 1.35 1.33 1.32 1.31 
max 1.71 1.67 1.64 1.62 1-60 159 
opt 1.57 154 152 1.50 1.49 1.49 

H ,  rnin 1.43 1.42 1.41 1.41 1.40 1.40 
max 1.82 1.80 1.79 1.78 1.78 1.78 
opt 1.67 1.66 1.66 1.66 1.65 1.65 

H ,  rnin 3.37 3.35 3.33 3.32 3.31 3.31 
max 3.77 3-74 3.71 3.69 3.68 3.67 
opt 3.56 3-55 3.54 3.53 3.52 3-52 

Efficiency 0.48 0-48 0.46 0.43 0.42 0.41 

the choice of the appropriate split? Although some of the answers are underway,30 much work 
remains to be done. 
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