
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 10,907-923 (1990)

SOLVING NUMERICALLY THE NAVIER-STOKES
EQUATIONS O N PARALLEL SYSTEMS

AVI LIN
Department of Mathematics, Temple University, Philadelphia, P A 19122, U.S.A

SUMMARY
A new general approach for numerically computing flow fields on parallel computing environments is
presented, discussed and analysed. The hierarchy presented here is based on a parallel split of operators. A
portion of the theory is presented together with its application to two- and three-dimensional flows. This
strategy is applied to a two-dimensional problem for which a specific parallel split, called a parabolized split,
is given. The parallel algorithm that results from this split is analysed, leading to reasonably good parallel
efficiency, which is close to 50%. Actual experiments lead to similar conclusions. This parallel strategy can
also be used together with other parallel computing algorithms, such as domain decomposition, to give an
optimal-type parallel algorithm for the Navier-Stokes equations.

KEY WORDS Parallel computing Parallel iterative methods Numerical splitting techniques

1. INTRODUCTION

It is well accepted today that the Navier-Stokes (NS) equations exhibit a good approximation for
the behaviour of the motion of flows and for aerodynamics in general. Since the area of
computational aerodynamics is very important, a variety of numerical schemes for solving these
equations for many different cases, for different instances of the flow fields and for different
geometries have been devised during the last decade. Thus naturally, computational fluid
dynamics (CFD) has emerged, especially in the last few years, as an essential element for progress
in two related fields:

(a) a deeper understanding of the physics of the flow
(b) the design process of most types of aerospace vehicles.

This very important revolution has been driven by advances in computer power that have led to
advances in numerical techniques. The result is that better computational simulations are
achieved more cost-effectively. This remarkable progress (mostly made during the last 10 years or
so), which was sparked by the availability of supercomputers, was focused primarily on the
development of inviscid flow field simulation techniques.

Obviously, there are some advantages and disadvantages to most of the known schemes, the
available algorithms for computing the flow quantities using the chosen scheme, and the
computing techniques used to implement these schemes and algorithms. One of the main
bottlenecks of many of these schemes is the huge amount of CPU time consumption needed to get
satisfactory solutions for the system of approximate equations. It is obvious that there exists a
coupling between the computing time consumption and the nature of the scheme, but usually any

0271-2091/90/080907-17$08.50
0 1990 by John Wiley & Sons, Ltd.

Received May 1989
Revised October 1989

908 A. LIN

algorithm to solve these equations will require large resources of computing time and memory.
This is not the only problem these schemes face in using the present computing facilities, but this
paper will concentrate mainly on this issue.

Supercomputing is a resource that many computational researchers are using today to
overcome this problem. Since ‘supercomputing’ is not a well defined mathematical notion, it is
viewed here as computational hardware which consists of vector-like computers and parallel-like
computers. Although it has been shown for a few cases that vectorizing the numerical scheme
while using vector machines to execute the numerical algorithm gives a reasonable speed-up when
compared to the standard scalar machines, it has also been shown’ that in some cases the
application of vector-like schemes to the fluid flow numerical equations when using more
reasonable computing algorithms produces only a limited speed-up over scalar machines. It will
be shown here that a better way of achieving a good speed-up using current schemes, which are
theoretically unbounded in some sense, is by using a parallel machines as the main carrier for the
computations. This is especially important since now it is quite evident that forthcoming (super)
computers will have substantial capabilities of parallelism.

The present paper focuses on extending the simulation capabilities to more complex flow fields
as well as obtaining a more complete treatment of aerodynamic phenomena. A major goal that
combines both of these directions is the simulation of three-dimensional fluid flow around a
complex body or three-dimensional internal flow. When trying to achieve such a goal, it is
necessary to be cognizant of the available types of computing tools. One of the problems that
appears in mathematical computing, especially in the CFD area, when a new concept of computer
hardware arrives, is how to redesign efficiently the existing numerical schemes or how to invent
new numerical schemes to take advantage of the special capabilities of the new machine.

This paper presents a new parallel/distributed strategy to solve numerically steady state two-
and three-dimensional incompressible viscous fluid flow problems. One of the main goals of this
paper is to develop a good combination of a numerical scheme and a parallel computational
technique that, together with the appropriate parallel engines which are available (or will soon be
available) on the market, will produce high-performance codes for computational fluid dynamics
and will make it possible to examine more closely finer and finer structures that a fluid may
produce during its flow. It is known that it is very difficult to solve computationally the governing
(Navier-Stokes) equations for these steady state problems, while for other cases (such as unsteady
fields or compressible flows) the numerical problem is a bit easier and thus simplified versions of
the present schemes may be used. Although it is treated extensively in Reference 2, special
attention is given in this paper to high-order numerical schemes for flow fields, which can be used
for high-Reynolds-number flows. The formulation of the schemes is affected by the nature of the
computer to be used. Basically, it may be extrapolated from this work that any MIMD machine
with a fast interconnection network between the processors or a fast access to the shared memory
can serve as a reasonable parallel computer to implement the suggested strategy, while there is no
real limitation on the number of processors in this machine.

After some definitions and the problem lay-out, a new parallel/distributed scheme to compute
three-dimensional viscous fluid flow is described and discussed. This scheme is quite general and
does not require specific machines.

2. THE PARALLEL COMPUTATIONAL MODEL

In this section the general computational model of a parallel machine will be described. The basic
features are needed in order to implement efficiently the parallel CFD algorithms. For the present

PARALLELCFD 909

family of algorithms it is enough to describe the parallel machine as a single computer that
includes?

(a) multiple processors
(b) processors which may communicate and cooperate at different levels to solve a given

(c) multiprocessors controlled by the same operating system-this operating system also
computational problem

controls the other computer resources.

Two architecturally different parallel machines are available on the market:

(a) loosely coupled multiprocessors where each processor has a large local memory in which an
appropriate part of the algorithm and the appropriate data reside-the processors
communicate by exchanging messages through an interconnection network

(b) tightly coupled multiprocessors where all of the processors share a common memory-here
the communication between the processors is done via the shared money.

The main bottleneck of the loosely coupled systems is in the low bandwidth of the interconnection
network: and although the rate at which data can communicate from one processor to another in
a tightly coupled system is of the order of the bandwidth of the memory, the main reason for the
performance deterioration in these systems is memory ~ontent ion .~ Since the primary breakdown
in efficiency for parallel systems is in the extensive need for communication between the various
resources, one of the main goals in formulating the parallel numerical scheme is to minimize the
communication between the different tasks.

3. THE DISCRETE NUMERICAL MODEL

In order to solve the NS equations on a digital computer, they have to be discretized. There are
several methods which transform the continuous problem to a discrete one (via finite differences,
finite elements, spectral approximations, etc.). However, before discussing this area it is important
to decide which mathematical description of the NS equations is the most appropriate for a
parallel environment.

3.1. The governing equations

momentum equations, which form the following elliptic system. We call this system I:
The steady state incompressible flow is governed by the continuity equation and the three

au av aw
ax ay aZ -+- +-= S,

au au au ap
ax ay aZ ax u-+ v-+ w- = --+ &V2U +fi,
av av av ap
ax ay az ay u-+v-+w-= - -+&VZV+f , ,

aw aw aw ap
ax ay aZ aZ u-+v-+w-= - - -+&V2w+f , ,

(3)

(4)

where u, v and w are the Cartesian components of the velocity vector V =(u, v , w) ~ in the x-, y- and
z-directions respectively, p is the pressure function and E is the inverse of the flow Reynolds

910 A. LIN

number. The operator V2 is defined as usual

This system has two driven terms: s is the mass source term and f is the external force
vector which acts on the flow. Usually these source terms are zero. System I is of the elliptic type
and has to be solved in some (given) domain R e g 3 with a well defined boundary an. The
boundary conditions over an are usually given in terms of the velocity vector and/or its gradients:

a v
an

aV + b- = c,

where a and b are (local) 3 x 3 matrices and c is a three-element column vector. Each of the entries
of the coefficients in (5) is a given function of iX2 and V, while the value of the pressure is given at
some point in R:

In fact, (5) can be replaced by any kind of three relations between V and p on an which constitute a
non-singular system at each point of dn.

P (X 0) = P o . (6)

3.2. The computational system

From the computational point of view, system I is usually referred to as the primitive variables
system. In the past some difficulties have been reported when trying to solve numerically the
primitive system. Roache6 discusses some major difficulties in solving the primitive variables
system. The main conclusion from this discussion is that the drawbacks of the other possibilities
are much more severe than those of the primitive system. (Indeed, recent numerical procedures for
the NS equations use the reduced variables formulation.) The primitive equations (system I) are an
elliptic system by definition, since it can be shown that the determinant of the principal symbol of
this system does not vanish for non-zero values of the dual variables' (this condition results from
the regularity requirement of the elliptic systems). This definition of ellipticity can be extended to
define an elliptic computational system (for the finite difference case see References 9-1 I) , which
leads to the conclusion that if 2k is the order of the principal values' determinant, then the elliptic
system needs k boundary conditions at each point of an. Thus the NS equations need only d
boundary conditions" at every point of 22, where d is the number of dimensions of the flow
domain.

In the present paper we will solve the discrete version of the primitive system I of the NS
equations. This two- or three-dimensional system is non-linear and thus to obtain accurate
solutions it is necessary to employ an iterative technique." Next we briefly describe the possible
iterative modes that will be considered later.

4. THE ITERATIVE APPROACH

The concept that will be used here for solving system I numerically is a version of the iterative
factorization p r ~ c e d u r e ' ~ which is suited for a parallel environment. It is not the only possible
approach, but this one enjoys several nice features which may make it more useful. We discuss this
in more detail later.

PARALLEL CFD 91 1

4.1. The general technique

We start with some standard definition^.'^

Dejnition 1. The time complexity of a scheme or of an algorithm is the time needed by the

(a) the size of the problem,
(b) the machine’s units time.

scheme to solve a problem, expressed in terms of:

Assume now that L is a partial differential operator of the elliptic type, which operates on
functions 4, 46Rd.

Definition 2. A discrete size of L is the number of discrete elements in Rd that are considered in
order to approximate L.

For example, it is said that the discrete size of L is N if N is the number of grid points in iz, when L
is approximated by some finite difference procedure, or if N is the number of modes taken into
consideration, when L is approximated by some kind of a spectral procedure.15 Suppose that the
following elliptic PDE has to be solved:

L@ = R, (7)
where R is a known right-hand side (RHS). Most of the time it is very difficult or even impossible to
get an analytical solution or a direct numerical solution for this problem (especially when L is a
non-linear operator). The usual way of solving (7) is by using some iterative procedure. Generally
speaking, when using an iterative procedure, one has to start with some initial guess for the
solution, say . . . } that will converge to the
solution CD of (7). Most of the methods usually suggest that the nth element in this sequence (the
one that is calculated in the nth iteration level) is a linear combination of some k previous elements:

and then generate a sequence S = {@“), a(’),

where k is the depth of the recursive scheme. These procedures differ from one another:

(a) in the value of k
(b) in the way the operators Li, are constructed.

In the present approach a depth 1 (k = 1) recurrence iterative procedure will be considered, while
each iteration level consists of a fixed number of substeps as will be explained later. Thus instead of
(8) the following iteration procedure will be considered,

@(n + 1) = M(n)@(n) + Nb),

and in order to satisfy the original equation (7), the operator M and the function N have to satisfy
the following relation at each level n:

(9)

L(I-M(~))-”(~)=R. (10)

We will restrict the present iterative procedure to be of the stationary type, i.e. M and N are not
functions of the iteration level n. Although this assumption may contradict the non-linear fashion
of the operator L as defined by the NS equations, it holds at least locally in the iterative directions
and therefore the conclusions may be applied only for a certain number of iterations (this

912 A. LIN

approach is sometimes called the quasi-linear iterative approach). The main difference between
the intermediate results of a substep and the one-step results of the iterative procedure in a given
iteration level is that the substep's results do not have to be a solution to (7), not even in the
convergent state, while the iteration procedure is designed to satisfy (7) in the convergent state. If
N is a known stationary function (a .id thus should not depend on n), then in general it can be
assumed that it depends only on R. For example,

N=GR, (1 1)

M = MI-HL. (12)

where G is a given operator. If M is not a function of n, then it can only be a function of L. Assume

Thus from (10) it follows that

(G -H)L=I-Ml.

This equation defines a family of iterative methods which differ from one another in their choices
for the three operators G, H and M,. We will concentrate on two different approaches for
generating these operators.

4.2. Splitting and factoring

The techniques for finding M and N are divided into two major classes: the factoring class and
the splitting class. In the first technique the operator L is approximated by a product of several
operators whose inverse is well defined and can be computed directly and easily, and the iteration
loop is performed in order to 'bridge' over the difference between the approximation to the
operator L and the operator L itself. In the second technique several different operators which are
'close' to the operator L are identified so that their inverses can be computed easily on the given
computer system. Then the approximate solution to (7) will consist of some (linear) combination of
these approximate solutions. Again the iterations are performed to narrow the gap between the
approximate solution to (7) and the exact one.

4.2.1. The factoring techniques. This procedure is designed based on the assumption that L can
be decomposed into d operators as

d

L= c Ai.
i = 1

(14)

Given a sequence of scalars ,4 = { A i } ! = 1, let us define the (A) operators as

.& = Ai + l iI . (15)
It can be shown that if it is known how to reasonably and quickly (numerically) invert the operator
Ai, then the same procedure can be used to find the inverse of &. Based on this observation the
present iterative technique is constructed as follows. Denoting by a(') the approximation for Q, at
the nth iteration level, and by 'Yj the results of thejth substep at this level, the computations at the
nth level of the algorithm start by setting

9 (16) \yo = - 1).

then d substeps are executed, where the ith substep is given by
i - 1

AiYi=-C Ei,j'I'j+Fi, i = 1 , 2 , . . . , d ,
j = O

PARALLELCFD 913

and the result of the last substep is stored in a("):
= Yd. (18)

Here {Ei, j } is a given sequence of operators and (Fi} is a given sequence of functions. At each
substep of the algorithm the appropriate E operators and F function have to be determined based
on the given factoring of the set of operators A and the values of CD and Y that are known up to the
current iteration level. It is reasonable to assume that the F function is related to R as follows:

Fi=QiR. (19)

D~ = A,: E,; (20)

The more common case is when Ei, = 0 for j < i - 1. Let us denote Ei, - = Ei and

then it follows that
d

i = 1
M = n D i

and

This factorization scheme is quite general and has 2d free operators. Application of the condition
given in (13) for this case is

Later this condition will be stated clearly. Figure 1 depicts schematically the iteration loop when
asing this technique.

Most of the implicit iterative methods discussed in the literature are of the factorization type.
The classical implicit methods have been discussed by DouglasI6 and Douglis and Nirenberg.
The classical factoring method is that of Peaceman and Rachford" and was developed for the case
where

I =function (A),
a 2 a 2

A - 7 9 A,=@, 2-C7y

with A the time step. For this case the following was chosen:

Figure 1. Pipeline scheme for the factorizing technique

914 A. LIN

They gave to the I1 the meaning of marching in the time-like direction (see Section4.1.3) as
follows. Assume that instead of (7) the following equation is considered:

where t is a time-like ('parabolic') co-ordinate. Then if central differences are considered for the
time term, the I s are proportional to the inverse of the marching time step. For this case the above
set of equations presents an approximation of the order of two in the time-like direction. The main
disadvantage of this technique, as pointed out by D'Yakonov'' and Mitchell and Griffiths,20 is
that it will lose its accuracy if the boundary conditions become time-dependent (which is irrelevant
in the present case).

4.2.2. The splitting technique. The splitting techniques are similar to the factoring techniques.
Assume as before that L can be split into d operators. Similar to the development done before for
the factoring technique, each iterative level of the splitting technique has also d substeps. The main
difference between these two approaches is that the results of each substep of the splitting method
should not rely on any of the results from the previous substeps. Thus the d independent substeps
are given by

Ai'I'i=R-BiW"l', i = l , 2 , . . . , d , (24)
and

where a = {a}:= are d operators with the condition
d 2 ai=I

i = 1

and the d operators Bi satisfy the condition given in the original equations, or after some algebraic
manipulation:

d

C aiA;'(L-Bi)=I.
i = 1

A simple schematic parallel implementation of this approach is shown in Figure 2. Another
condition that the free operators ai have to satisfy is that the iterative processes will converge in the
maximum speed-up. It can be shown that this condition means

where A is now the spectral radius of an operator (or a matrix). Several splitting-type techniques
are used in the literature (examples appear in References 21 and 22). It is evident that not much
work has been done in this direction, probably owing to the fact that splitting methods are much
slower on serial computers than factoring methods. However, versions of the approximate
correction proceduresz3 and of the Hopscotch procedurez4 can be presented as splitting methods
and not only in the factoring version. The latest observation as it appears in the literature is that
often more than one factoring or Splitting formula can be chosen to obtain a computationally
attractive process.

PARALLEL CFD 915

-
Figure 2. Parallel scheme for the splitting technique

4.3. Parallel iterative procedure

From the above discussion it seems that the splitting procedure is appropriate to be
implemented on parallel machines. Let us demonstrate this technique as is described in
Section 5.2.2 for d = 2.

Assume that the operator L in (14) is split into

L = A l +A2. (29)
Then each parallel nth iteration can be written as follows:

and the next approximation is given as

(32) " + I) - 4' -a1 Vl +%V2Y

where a, and a2 are two known coefficient matrices. This scheme can be written as

#"+ l) = [al (A - Jl I)- + a2 (A, - 1, I)- b - [a1 (A , - 1, I)- (A2 - O, I)
+a2(A2-L21)-'(Al -0~1)]4(").

If the exact solution to this problem is 4 and we denote the error function by
&(") 4 - 9(")

then it can be shown that
E(" + 1) = ME(") Y

where

M = 011 (A1 - 1, 1)- (A2 - 01 I) + aZ(A2 - 121)- (A1 - 021)

and is subject to the condition

(a, +~~)+(o~+1~)a,(A~-1~I)-'+(o~+~~)a,(A~ -A21)-'=1.

916 A. LIN

Let us consider as a simple example the standard serial AD1 schemes." Here the scalar I s are the
inverse of the half time step size, and the u s are just the negative of the respective As, i.e.

1' = - 0 1 , L 2 = -02. (38)

(39)

Then a relationship similar to (28) holds:

M = [u ~ (A, - AII)-' + U , (A ~ - LJ-']L-I.

The main problem is to find a set of six parameters Al , z , w1,2 and such that the rate of
convergence will be maximum or IL(M)I will be as small as possible. This by itself is a very difficult
mathematical problem. In addition, it can be seen intuitively that there exists a specific split of L
that will also maximize the convergence rate of the iterative process. Given that, the optimization
problem is almost not solvable and some assumptions or approximations for the values of some of
the parameters are needed.

In the rest of this paper we will analyse a parallel numerical scheme for the two-dimensional NS
equations which is optimal over a subset of these parameters.

5. A PARALLEL SCHEME FOR TWO-DIMENSIONAL FLOWS

In this section we will develop a very specific and simple parallel algorithm for two-dimensional
viscous flows based on the theory outlined in the preceding section, along with some assumptions
which make the analysis easier. This algorithm was actually implemented on parallel computing
environments.

5.1. The computational scheme

The governing equations are extracted from equations (lH3):

au av
-+-=0, ax ay

au au ap (a2, a i U)
ax ay ax a x 2 ay2

u-+v-= a v av ----+& ap (a 2 v -+-- a;)
ax ay ay a x 2 a 2 .

u-+v-= ---+& -+-

A parallel solution of these equations is obtained by splitting the differential operator defined by
this system into two differential suboperators which are solved concurrently. From the previous
discussion it follows that the more the equations describing each of the suboperators resemble the
original operator the better is the scheme (in terms of its stability and rate of convergence). On the
other hand, these suboperators should be invertible in reasonable CPU time and direct access
memory consumption. The following split was chosen.

1. A, is an operator of the parabolized type in the x-direction.
2. A, is a parabolized operator in the y-direction.

The notion of 'parabolized' operator is well defined24 and is well ~ n d e r s t o o d . ~ ~ The main
reason for this choice is that there are many cases for which the parabolized NS approximation
can capture most of the flow's important features in most of the flow domain.'2'26 Let us denote
by the subscript 1 the results of the suboperator A, and by the subscript 2 the results of the

PARALLELCFD 917

suboperator A,. Thus the equations which result from A, are

au, av,
ax a y
---+--0,

The equations which result from the suboperator A, are

au, av, -+--0, ax ay

The source terms R and S are designed to bridge over the difference between each of the
operators A, and A, and the original operator (given by (43H48)). Numerically, these equations
are solved iteratively, where the calculated source terms are lagged one step behind the fields of
ul,,, u, , , and p , , , . Thus the iterative systems can be described in general as follows.

Given R , , , and S , , , with u and v until convergence.

1. Iterate until the source terms converge.
(a) Calculate the new fields u,,, , v , , , and p i , , .
(b) Calculate the new source terms R , , , and S1,,.

2. Calculate the new convection coefficients u and v.

One of the main advantages of this choice for A, and A, is that the solution of each operator
fulfils the continuity condition, which is a very important conservation law to be kept during the
solution process of flow fields in genera1.12*24

It is not clear as of now what values should be substituted for the convection coefficients u and v
in the above equations. Several of the possibilities are:

(a) the current values of u and v
(b) the current values of (u, , u l) , vl) and (u,, v ,) respectively.
(c) the values of u and v from the last global iteration.

Of course there are more possibilities. The discussion of this issue is delayed until the next
section where numerical solutions for the system are discussed. Now the two solutions, that of A,
and that of A,, have to be combined so that the result may serve as a good approximation for the
solution of the original system of equations. In the present paper a linear combination is assumed:

[; =cl[+c, [;;I.
In order for this procedure to converge we have to have

c, + c, = I.

918 A. LIN

In the present paper we further assume

Obviously this is quite a limited approach and one can assume a more general combination.
However, it turns out that it gives very encouraging results. If continuity has to be preserved
automatically, then

a1 =a2 = a, B 1 = P z = b

a3 = a, 83=b

If the coefficients of u and u in both operators are the same, then

and the conditions on the source terms are

For the present set-up we look for the appropriate values of the convection terms and the source
terms so that the rate of convergence will be as large as possible.

5.2. The parallel computing method

The model of computation that will be assumed and used here was described in Section 2. It is
assumed that the parallel environment consists of several loosely coupled processors which are
clustered into two groups: one that is used by the operator A, and the other that is used by the
operator A,.

The flow of the computation is such that there are two levels of parallelism. In the coarse-grain
level the two subsystems (43H45) and (46H48) are solved concurrently. Each of these subsystems
is solved by marching along the splitting direction (which is, for example, x for the A, operator)
and solving implicitly along the other direction. The marching procedure is performed in the
parabolized-like fashion which is well documented in Reference 25. The governing equations
along the normal direction are of the boundary value problem (BVP) type.” Here the fine-grain
parallelism enters as the BVP equations are solved locally in a fine parallel manner. This parallel
procedure is based on the co-ordinate-split strategy which is well documented in References 1
and 27. After the two subsystems are solved, the expressions which construct the source
terms are calculated. Since this is an explicit or a passive step, these elements can be calculated
in parallel using the appropriate processor, almost without shuffling data around.

Here the processors under the control of A, compute (in parallel) the values of a2ul/ax2 and
a2vl/dx2 and, concurrently, those under the control of A, compute in parallel the values of
a2u2laY2 and a2v2/ay2.

Finally there is one step which is a scalar-like operation: the calculation of the flow velocities
and the source terms themselves. But since this is a passive operation (i.e. all the elements involved
carry old values), these calculations can also be executed in parallel. However, if this step is
executed concurrently by all the available processors, it may need a lot of data transfer which may
affect the time complexity dramatically.

The numerical scheme used to solve the parabolized equations for given convection coefficients
and source terms is similar to the one used in References 24 and 25. However, an appropriate
correction was added to the computational system in order to maintain second-order accuracy for

PARALLELCFD 919

all the finite-differenced terms. This procedure is unconditionally stable in the linear case and
converges relatively fast in the general case.

5.3. Stability of the global iteration

Here we wish to check the stability situation due to the lagged calculations of the source terms.
Most of the analysis will be done for the linear case. For the non-linear case, since its solution is
obtained by using a second-order rate of convergence algorithm (such as the quasi-linear
algorithm), this analysis can be applied to each of its linear steps.

In order to get some general results on the stability condition, let us start with the Poisson
equation

L x +fyy = 0.

The parabolized iterative version for this equation is

&!! I) - G(@"+ I)) = - [a$G) + (1 - c1)4c] - G(#")),

$r I) - H($'"fl') = - [B&'+(1 -/?)$fi-H($(")),

where c1 and /? are two scalar coefficients. Although we will assume hereafter that G and H are two
scalar coefficients, in general they can be operators which operate on the scalar values of the two
functions 4 and $.

In order to analyse this simple iterative system, we have to be more specific about the numerical
procedure. We choose here to solve this system by using a finite difference scheme. Let h and k be
the (constant) grid spacings and N, and Ny be the number of grid points in the x- and y-direction
respectively. In the case of convergence the error functions are defined as

&(") = p). $0 = ,j (a) - ,j(n).

The analysis of the stability and convergence is done here using the von Neumann approach.'* Let

Xi 6.=--, X j 1 <j<Ny. 1 < i < N,, ' NY Y.=- ' N,'

Then the error functions are expressed as

= 1 A,, exp(i y k i) exp(i8, j), Sj:i= 1 B,, exp(iy,i) exp(iB,j),
k , I k, I

where i2 = - 1 and A, and B,, are the amplification coefficients. The main assumption that we will
use later in connection with the amplification coefficients is

A,, =&a", B,,=@".

Although it is not shown explicitly, 2 obviously depends on the (i, j) th mode of the error function.
Now we need to estimate the values of H , G, c(and /? that will minimize the amplification factor 2
over all the possible modes. It can be shown that for each of the modes, 1 fulfils the following
quadratic equation:

AA2 + BA + C=O,

where
A = (H + @(G + y),
B=(H + Q)[(1 -a)@- 13 +(G + y)[(1 -P)?- 11,
C=[H-(l -P)Y][G-(l -a>@]-c1Bjj6

920 A. LIN

with

It can be shown that the maximum values of i occur when the angles y and 0 are minimum.
Unfortunately it can be proven that I cannot have any local minimum with respect to (real values
of) G and H and thus the optimum situation has to be sought in some other way. However, it can
be proven that in order for this scheme to be stable and convergent the following inequalities have
to be satisfied:

?(G - @)B + @(H - ?)a < ~y + H R
sin ?/(G+y))B+&H + @) a < (G + Y) (H + e+?- 1)+(H + @(G+ @+ 7- 1).

From examining the results of several test cases we observed that as far as the dependence of the
rate of convergence on CI and)B is concerned, the minimum value of 111 happens to occur for very
small positive values of these parameters. For this case it can be shown that

(H - T) (G - ~)) B ~ (G - ~) + c I ~ T (H - ~)
I A 2 ' = (H + ~) (~ + j q + (G + ~ w I + @)

If indeed the values of 7 and 8 are very small compared with those of H and G, then

G + H +
2GH ' ' ' '

I = 1 -(@+?)-

Table I depicts some examples of this dependence of the best I on the values of G and H as reflected
by equation (50).

It should be noted that since the equations for A are non-linear, we may expect to have more
than one optimal couple (G, H) that will give the same value for I . In practice we choose

- G H 4e=- 47=-
G + H ' G + H '

It was found that these values give a near-optimal rate of convergence in actual calculations.

5.4. The two-dimensional calculations

Two cases for which this strategy was applied are discussed: the well known square driven cavity
problem 2 and the flow over a backstep." Refering to the governing equations (40H42), in order

Table I

10 x 10 1.32
1.404

2.0
1.41 1

20 x 20 1.48

40 x 40 1.46
1.86
1.4137

1.5 0.8269
1.404

1.35 0.8560
1.09
1.41 1

1.37 0.8635
1.14
1.4135

PARALLELCFD 92 1

to reduce the amount of calculation while not damaging the numerical scheme, we have chosen
S , = S , = 0. Also a term of the type G / was subtracted from both sides of (44), (47) and a similar
term H/ was subtracted from both sides of (49, (48). Here / = (u , u, and H and G are two
3 x 3 constant matrices. We have chosen these matrices as diagonal with a zero value for their
first entry:

G = 0 G , :], H=[: :, :] .
0 0 G, 0 0 H ,

The iterative procedure consists of several loops. The outside loop is due to the quasi-
linearization.' At this level of iteration no parallel procedure can be enforced since it is an inherent
serial recursive system of depth 1 (i.e. gi = f (g i - ,)). We start applying the parallel strategy at the
linear level. The stability analysis of these equations is far more complicated than that in the
previous section. In any event it is possible to get some bounds on the parameters G and H. For
example it can be proven that

where N = N , = N , and Gz, , means MAX(I Gz 1, I G, I). Of course, better and more accurate values
of G and H can be obtained but the procedure is very involved. In Table I1 values of G and H for
various Reynolds numbers are depicted for both flows (the square cavity and the backstep flow)
along with some other details. The calculations were performed on the Allaint parallel computer.
In order to exemplify the flexibility of this approach, three processors were devoted to the A,
operator and four processors were devoted to the A, operator. The results are presented for 401
x 763 grid points. We denote the values of G and H for the x-momentum equation by (G , , HI).
Similarly, (G, , H ,) are the values of G and H for the y-momentum equation. The convection terms
were treated by second-order upwind differencing.' We measure here the quality of the parallel
algorithm by the ratio between the pure parallel CPU time and the CPU time needed to solve this
problem on one of the processors in the parallel environment, using a similar serial algorithm.
Defining this quantity as an efficiency, the numerical experiments presented in Table I1 suggest
that the parallel efficiency approaches 50%. This result coincides with a similar result for parallel
computing of elliptic operators and boundary value problems15 for which we have gotten a similar
result.

6. CONCLUSIONS

A new approach for the parallel numerical computation of the two- and three-dimensional
Navier-Stokes equations is developed and discussed. The method is based on the idea of a m l e l
operator split. This new direction for parallel computing is not fully developed yet, and the good
results presented in the present paper suggest that more careful attention and effort should be
devoted to this idea. Although the theory of such a split is not complete yet, we have shown how
this approach can be implemented in two-dimensional simple flows, for which we have been able
to get theoretical results for the approximated rate of covergence of the parallel iterative methods.

It is expected that the parallel split theory will spin off in the near future and will resolve some of
the questions that were encountered during the course of this work, such as: Since there are several
possibilities for the parallel split for a given set of PDEs (which are stable and consistent), what is
the best split (in terms of parallel rate of convergence)? How does the parallel hardware influence

922 A. LIN

Table I1

Re 20 50 100 200 500 lo00

Square cavity G, rnin
max
opt

G, rnin
max
opt

H , min
max
opt

H , rnin
max
opt

Efficiency

1.53 1.42
3.41 3.35
2.54 2-51
1.44 1.42
1.78 1.75
1.63 1-61

1.51 1.50
1.93 1.90
1.74 1.74

2.05 2.02
2.61 1.57
2.35 2.33
0.48 0-47

1.39 1.38 1.38 1.37
3.29 3.24 3-19 3.16
2.48 2.46 2.45 2.44
1.41 1.40 1.40 1.40
1.73 1.71 1.70 1.69
1.60 1.60 1.59 1.59

1.49 1-49 1-49 1.49
1.88 1.87 1-87 1.86
1.73 1.73 1.73 1.72
2.01 1.99 1.98 1.98
2.54 1.51 1.49 2.48
2.32 2.31 2-31 2.30
0.44 0.41 0.40 0.40

Back step G , rnin 1.74 1.67 1.61 1.55 1.49 1.46
max 4.23 4.15 4.09 4.04 4.01 3.98
opt 2-94 2-89 2.86 2.84 2.83 2.83

G, rnin 1.40 1.37 1.35 1.33 1.32 1.31
max 1.71 1.67 1.64 1.62 1-60 159
opt 1.57 154 152 1.50 1.49 1.49

H , rnin 1.43 1.42 1.41 1.41 1.40 1.40
max 1.82 1.80 1.79 1.78 1.78 1.78
opt 1.67 1.66 1.66 1.66 1.65 1.65

H , rnin 3.37 3.35 3.33 3.32 3.31 3.31
max 3.77 3-74 3.71 3.69 3.68 3.67
opt 3.56 3-55 3.54 3.53 3.52 3-52

Efficiency 0.48 0-48 0.46 0.43 0.42 0.41

the choice of the appropriate split? Although some of the answers are underway,30 much work
remains to be done.

REFERENCES

1. A. Lin, ‘Parallel and super computing of elliptic operators’, in L. Kartashev and S. Kartashev (eds), Supercomputing,
The International Supercomputing Institute, 1987, pp. 497-502.

2. A. Lin, ‘Stable second-order-accurate iterative solutions for second-order elliptic problems’, In t . j . numer. methods
Juids, 9, 87-102 (1989).

3. J. M. Ortega and R. G. Voight, ‘Solution of partial differential equations on vector and parallel computers’, SIAM Rev.

4. G. Lee, ‘Another combining scheme to reduce hot spot contention in large scale shared memory parallel computers, in
E. N. Houstis et al. (eds), Supercomputing, Lecture Notes in Computer Science, Vol. 297, Springer, 1987, pp. 112-137.

5. P. A. Franaszek and C. J. Georgiou, ‘Multipath hierarchy In interconnection networks’, Supercomputing, in E. N.
Houstis et al. (eds), Lecture Notes in Computer Science, Vol. 297, Springer, 1987, pp. 523-534.

6. P. Rouche, Computational Fluid Dynamics, Hermosa, Alburquerque, NM, 1976.
7. J. C. Strikwerda, ‘Finite difference methods for the Stokes and Navier Stokes equations, SIAM J . Sci. Comput. 5,5668

8. S. Agmon, A. Douglis and L. Nirenberg, ‘Estimates near the boundary of solutions of elliptic partial differential

27, 149-240 (1985).

(1984).

equations satisfying general boundary conditions, III’, Commun. Pure Appl. Math., 17, 35-92 (1964).

PARALLELCFD 923

9. A. Brant and N. Dinar, ‘Multi-grid solutions to elliptic flow problems’, Proc. Conf on Numerical Solutions of Partial

10. K. Bube and J. C. Strikwerda, ‘Interior regularity estimates for elliptic systems of differenced equations’, SlAM J .

1 I . V. Thomee and B. Westergren, ‘Elliptic difference equations and interior regularity’, Numer. Math., 11,196-210 (1968).
12. A. Lin and S. G. Rubin, ‘Three dimensional supersonic flow over a cone at incidence’, AIAA J. , 20,150@1507 (1982).
13. A. R. Gourlay and S. McKee, ‘The construction of Hopscotch methods for parabolic and elliptic equations in two

14. J. Schwartz, ‘Ultracomputers’, ACM Trans. Program. Lang. Syst., 2, 484-521 (1980).
15. A. Lin, ‘Parallel algorithms for boundary value problems’, Int. J . Parallel and Distributed Computing, to appear.
16. J. Douglas Jr., ‘On the numerical integration of u,, + uyy = U, by implicit methods’, J . Soc. Indust. Appl. Math., 3,42-65

17. A. Douglis and L. Nirenberg, ‘Interior estimates for elliptic systems of partial differential equations’,Commun. Pure

18. D. W. Peaceman and H. H. Rachford, ‘The numerical solution of parabolic and elliptic differential equations’, J . SOC.

19. Ye G. DYakonov, ‘On the application of disintegrating difference operators’, 2. Vycisl. Mat. Mat . Fiz., 3, 385-388

20. A. R. Mitchell and D. F. Griffiths, The Finite Diflerence Method in Partial DifJerential Equations, Wiley, N.Y., 1985.
21. P. J. van der Houwen and J. G. Verwer, ‘One-step splitting methods for semi-discrete parabolic equations’, Computing,

22. B. P. Sommeijer, P. J. van der Houwer and J. G. Vewer, ‘On the treatment of time dependent boundary conditions in

23. N. N. Yanenko, The Method ofFractional Steps, Springer, 1971.
24. A. Lin and S. G. Rubin, ‘Marching with the parabolized Navier Stokes equations’, Israel J . Technol., 18,61-78 (1981).
25. A. Lin and M. Israeli, ‘Iterative numerical solution and boundary conditions for the parabolized Navier Stokes

26. S. G. Rubin, ‘A review of marching procedures for parabolized Navier-Stokes equations’, Proc. Symp. on Numerical

27. A. Lin, ‘Parallel algorithms for three dimensional flows’, Numerical Methods in Flows, Vol. 5, Part 1, Pineridge Press,

28. H. B. Keller, Numerical Methods for Two-point Boundary Value Problems, Blaisdell, Waltham, MA, 1968.
29. U. Ghia, K. N. Ghia and C. T. Shin, ‘High-Re solutions for incompressible flow using the Navier-Stokesequations and

30. A. Lin, ‘Fast parallel schemes for computational fluid flows’, Int. Conf on Numerical Methods in Laminar and Turbulent

Diflerential Equations, Madison, WI, October 1978.

Numer. Anal., 20, 639-656 (1983).

space dimensions with mixed derivatives’, J . Comput. Appl. Math., 3, 201-206 (1977).

(1955).

Appl. Math., 8, 503-538 (1955).

Indust. Appl. Math., 3, 2 8 4 1 (1955).

(1963).

22,291-309 (1979).

splitting methods for parabolic differential equations’, Int. j . numer. methods eng., 17, 335-346 (1981).

equations’, Int. J . Comput. Fluids, 13, 397409 (1985).

and Physical Aspects of Aerodynamic Flows, Long Beach, CA, Springer, 1981.

Swansea, 1987, pp. 48-56.

a multigrid method‘, J . Comput. Phys., 48, 59 (1982).

Flows, July 1989, invited talk, Swansea, England.

